Key references

Bey et al. [2001] is the first reference to GEOS-Chem that includes a detailed model description. It is suitable as an original reference for the model. It only describes a model for gas-phase tropospheric oxidant chemistry. Subsequent original references for major additional model features are:

  1. Park et al. [2004] for aerosol chemistry;

  2. Wang et al. [2004] for the nested model;

  3. Henze et al. [2007] for the model adjoint;

  4. Selin et al. [2007] for the mercury simulation;

  5. Trivitayanurak et al. [2008] for TOMAS aerosol microphysics;

  6. Yu and Luo [2009] for APM aerosol microphysics;

  7. Eastham et al. [2014] and for stratospheric chemistry;

  8. Keller et al. [2014] and Lin et al. [2021] for HEMCO;

  9. Long et al. [2015] for the grid-independent GEOS-Chem;

  10. Eastham et al. [2018] for the high-performance GEOS-Chem (GCHP);

  11. Hu et al. [2018] for GEOS-Chem within the GEOS ESM (GEOS-GC);

  12. Lin et al. [2020] for GEOS-Chem within WRF (WRF-GC);

  13. Zhuang et al. [2019] and Zhuang et al. [2020] for implementations of GEOS-Chem Classic and GCHP on the cloud;

  14. Bindle et al. [2021] for the stretched-grid capability in GCHP.

  15. Murray et al. [2021] for GEOS-Chem driven by GISS GCM fields (GCAP 2.0)

References

Bey et al., 2001

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001. doi:10.1029/2001JD000807.

Bindle et al., 2021

Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer, B. M., Clune, T. L., Weng, H., Lin, J., Murray, L. T., Meng, J., Keller, C. A., Putman, W. M., Pawson, S., and Jacob, D. J. Grid-stretching capability for the geos-chem 13.0.0 atmospheric chemistry model. Geosci. Model Dev., 14(10):5977–5997, 2021. doi:10.5194/gmd-14-5977-2021.

Eastham et al., 2014

Eastham, S.D., Weisenstein, D.K., and Barrett, S.R.H. Development and evaluation of the unified tropospheric-stratospheric chemistry extension (ucx) for the global chemistry-transport model geos-chem. Atmos. Env., 89:52–63, 2014. doi:10.1016/j.atmosenv.2014.02.001.

Eastham et al., 2018

Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J. GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. Geoscientific Model Development, 11(7):2941–2953, July 2018. doi:10.5194/gmd-11-2941-2018.

Henze et al., 2007

Henze, D.K., Hakami, A., and Seinfeld, J.H. Development of the adjoint of geos-chem. Atmos. Chem. Phys., 7:2413–2433, 2007. doi:10.5194/acp-7-2413-2007.

Hu et al., 2018

Hu, L., C.A. Keller and, M.S. L., Sherwen, T., Auer, B., Silva, A. D., Nielsen, J.E., Pawson, S., Thompson, M.A., Trayanov, A.L., Travis, K.R., Grange, S.K., Evans, M.J., and Jacob, D.J. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the geos-chem chemical module (v10-1) within the nasa geos earth system model (geos-5 esm). Geosci. Model Dev., 11:4603–4620, 2018. doi:10.5194/gmd-11-4603-2018.

Keller et al., 2014

Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

Lin et al., 2020

Lin, H., Feng, X., Fu, T.-M., Tian, H., Ma, Y., Zhang, L., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Lundgren, E. W., Zhuang, J., Zhang, Q., Lu, X., Zhang, L., Shen, L., Guo, J., Eastham, S. D., and Keller, C. A. Wrf-gc (v1.0): online coupling of wrf (v3.9.1.1) and geos-chem (v12.2.1) for regional atmospheric chemistry modeling – part 1: description of the one-way model. Geosci. Model. Dev., 13:3241–3265, 2020. doi:10.5194/gmd-13-3241-2020.

Lin et al., 2021

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized emissions component (hemco) 3.0 as a versatile emissions component for atmospheric models: application in the geos-chem, nasa geos, wrf-gc, cesm2, noaa gefs-aerosol, and noaa ufs models. Geosci. Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

Long et al., 2015

Long, M.S., and. J.E. Nielsen, R. Y., Keller, C.A., da Silva, A., Sulprizio, M.P., Pawson, S., and Jacob, D.J. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models. Geosci. Model Dev., 8(3):595–602, March 2015. doi:10.5194/gmd-8-595-2015.

Luo et al., 2020

Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in geos-chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020.

Murray et al., 2021

Murray, L.T., Leibensperger, E.M., Orbe, C., Mickley, L.J., and Sulprizio, M. Gcap 2.0: a global 3-d chemical-transport model framework for past, present, and future climate scenarios. Geosci. Model Dev., 14:5789–5823, 2021. doi:10.5194/gmd-14-5789-2021.

Park et al., 2004

Park, R.J., Jacob, D.J., Field, B.D., R.M. Yantosca, and Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the united states: implications for policy. J. Geophys. Res., 109(D15):204ff, 2004. doi:10.1029/2003JD004473.

Philip et al., 2016

Philip, S., Martin, R. V., and Keller, C. A. Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with geos-chem v10-01. Geosci. Model Dev., 9:1683–1695, 2016. doi:10.5194/gmd-9-1683-2016.

Selin et al., 2007

Selin, N.E., D.J. Jacob, Park, R.J., Yantosca, R.M., Strode, S., L. Jaeglé, and Jaffe, D. Chemical cycling and deposition of atmospheric mercury: global constraints from observations. J. Geophys. Res., 112(D02308):, 2007. doi:10.1029/2006JD007450.

Trivitiyanurak et al., 2008

Trivitayanurak, W., Adams, P., Spracklen, D., and Carslaw, K. Tropospheric aerosol microphysics simulation with assimilated meteorology: model description and intermodel comparison. Atmos. Chem. Phys., 8:3149–3168, 2008.

Wang et al., 2004

Wang, Y. X., Michael B. McElroy, Daniel J. Jacob, and Yantosca, R. M. A nested grid formulation for chemical transport over asia: applications to co. J. Geophys. Res., 109(D22):307ff, 2004. doi:10.1029/2004jd005237.

Yu and Luo 2009

Yu, F. and Luo, G. Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and ccn number concentrations. Atmos. Chem. Phys., 9(7):7691–7710, 2009.

Zhuang et al., 2019

Zhuang, J., D.J. Jacob, J. Flo-Gaya, Yantosca, R.M., Lundgren, E.W., Sulprizio, M.P., and Eastham, S.D. Enabling immediate access to earth science models through cloud computing: application to the geos-chem model. Bull. Amer. Met. Soc., pages 1943–1960, October 2019. doi:10.1175/BAMS-D-18-0243.1.

Zhuang et al., 2020

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P., and Eastham, S. D. Enabling High‐Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS‐Chem Atmospheric Chemistry Model. Journal of Advances in Modeling Earth Systems, May 2020. doi:10.1029/2020MS002064.