Key references

Bey et al. [2001] is the first reference to GEOS-Chem that includes a detailed model description. It is suitable as an original reference for the model. It only describes a model for gas-phase tropospheric oxidant chemistry. Subsequent original references for major additional model features are:

  1. Park et al. [2004] for aerosol chemistry;

  2. Y.X. Wang et al. [2004] for the nested model;

  3. Henze et al. [2007] for the model adjoint;

  4. Selin et al. [2007] for the mercury simulation;

  5. Trivitayanurak et al. [2008] for TOMAS aerosol microphysics;

  6. Yu and Luo [2009] for APM aerosol microphysics;

  7. Eastham et al. [2014] and for stratospheric chemistry;

  8. Keller et al. [2014] and Lin et al. [2021] for HEMCO;

  9. Long et al. [2015] for the grid-independent GEOS-Chem;

  10. Eastham et al. [2018] for the high-performance GEOS-Chem (GCHP);

  11. Hu et al. [2018] for GEOS-Chem within the GEOS ESM (GEOS-GC);

  12. Lin et al. [2020] for GEOS-Chem within WRF (WRF-GC);

  13. Zhuang et al. [2019] and Zhuang et al. [2020] for implementations of GEOS-Chem Classic and GCHP on the cloud;

  14. Bindle et al. [2021] for the stretched-grid capability in GCHP;

  15. Murray et al. [2021] for GEOS-Chem driven by GISS GCM fields (GCAP 2.0);

  16. Bukosa et al. [2023] for the carbon simulation;

  17. Lin et al. [2023] for KPP 3.0.0 with adaptive auto-reduction solver.


[Bey et al., 2001]

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106(D19):23073–23095, Oct 2001. doi:10.1029/2001JD000807.

[Bindle et al., 2021]

Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer, B. M., Clune, T. L., Weng, H., Lin, J., Murray, L. T., Meng, J., Keller, C. A., Putman, W. M., Pawson, S., and Jacob, D. J. Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model. Geosci. Model Dev., 14(10):5977–5997, 2021. doi:10.5194/gmd-14-5977-2021.

[Bukosa et al., 2023]

Bukosa, B., Fisher, J., Deutscher, N., and Jones, D. A Coupled CH4, CO and CO2 Simulation for Improved Chemical Source Modelling. Atmosphere, 14:764, 2023. doi:10.3390/atmos14050764.

[Eastham et al., 2014]

Eastham, S.D., Weisenstein, D.K., and Barrett, S.R.H. Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem. Atmos. Env., 89:52–63, 2014. doi:10.1016/j.atmosenv.2014.02.001.

[Eastham et al., 2018]

Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J. GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. Geoscientific Model Development, 11(7):2941–2953, July 2018. doi:10.5194/gmd-11-2941-2018.

[Henze et al., 2007]

Henze, D.K., Hakami, A., and Seinfeld, J.H. Development of the adjoint of GEOS-Chem. Atmos. Chem. Phys., 7:2413–2433, 2007. doi:10.5194/acp-7-2413-2007.

[Hu et al., 2018]

Hu, L., C.A. Keller and, M.S. L., Sherwen, T., Auer, B., Silva, A. D., Nielsen, J.E., Pawson, S., Thompson, M.A., Trayanov, A.L., Travis, K.R., Grange, S.K., Evans, M.J., and Jacob, D.J. Global simulation of tropospheric chemistry at 12.5km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth System Model (GEOS-5 ESM). Geosci. Model Dev., 11:4603–4620, 2018. doi:10.5194/gmd-11-4603-2018.

[Keller et al., 2014]

Keller, C. A., M.S. Long, Yantosca, R.M., Silva, A.M. D., Pawson, S., and Jacob, D.J. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev., 7(4):1409–1417, July 2014. doi:10.5194/gmd-7-1409-2014.

[Lin et al., 2020]

Lin, H., Feng, X., Fu, T.-M., Tian, H., Ma, Y., Zhang, L., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Lundgren, E. W., Zhuang, J., Zhang, Q., Lu, X., Zhang, L., Shen, L., Guo, J., Eastham, S. D., and Keller, C. A. WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling – Part 1: Description of the one-way model. Geosci. Model. Dev., 13:3241–3265, 2020. doi:10.5194/gmd-13-3241-2020.

[Lin et al., 2023]

Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob, D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: implementation and evaluation within the Kinetic Pre-Processor (KPP) version 3.0.0. J. Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.

[Lin et al., 2021]

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham4, S. D., Emmons, L. K., Campbell, P. C., Baker, B., Saylor, R. D., and Montuoro, R. Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci. Model. Dev., 14:5487–5506, 2021. doi:0.5194/gmd-14-5487-2021.

[Long et al., 2015]

Long, M.S., and. J.E. Nielsen, R. Y., Keller, C.A., da Silva, A., Sulprizio, M.P., Pawson, S., and Jacob, D.J. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models. Geosci. Model Dev., 8(3):595–602, March 2015. doi:10.5194/gmd-8-595-2015.

[Luo et al., 2020]

Luo, G., Yu, F., and Moch, J. Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors. Geosci. Model. Dev., 13:2879–2903, 2020. doi:10.5194/gmd-13-2879-2020.

[Murray et al., 2021]

Murray, L.T., Leibensperger, E.M., Orbe, C., Mickley, L.J., and Sulprizio, M. GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios. Geosci. Model Dev., 14:5789–5823, 2021. doi:10.5194/gmd-14-5789-2021.

[Park et al., 2004]

Park, R.J., Jacob, D.J., Field, B.D., R.M. Yantosca, and Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys. Res., 109(D15):204ff, 2004. doi:10.1029/2003JD004473.

[Philip et al., 2016]

Philip, S., Martin, R. V., and Keller, C. A. Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem v10-01. Geosci. Model Dev., 9:1683–1695, 2016. doi:10.5194/gmd-9-1683-2016.

[Selin et al., 2007]

Selin, N.E., D.J. Jacob, Park, R.J., Yantosca, R.M., Strode, S., L. Jaeglé, and Jaffe, D. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. J. Geophys. Res., 112(D02308):, 2007. doi:10.1029/2006JD007450.

[Trivitayanurak et al., 2008]

Trivitayanurak, W., Adams, P., Spracklen, D., and Carslaw, K. Tropospheric aerosol microphysics simulation with assimilated meteorology: model description and intermodel comparison. Atmos. Chem. Phys., 8:3149–3168, 2008.

[Wang et al., 2004]

Y.X. Wang, McElroy, M.B., Jacob, D.J., and Yantosca, R.M. A Nested Grid Formulation for Chemical Transport over Asia: Applications to CO. J. Geophys. Res., 109(D22):307ff, 2004. doi:10.1029/2004jd005237.

[Yu and Luo 2009]

Yu, F. and Luo, G. Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys., 9(7):7691–7710, 2009.

[Zhuang et al., 2019]

Zhuang, J., D.J. Jacob, J. Flo-Gaya, Yantosca, R.M., Lundgren, E.W., Sulprizio, M.P., and Eastham, S.D. Enabling immediate access to Earth science models through cloud computing: application to the GEOS-Chem model. Bull. Amer. Met. Soc., pages 1943–1960, October 2019. doi:10.1175/BAMS-D-18-0243.1.

[Zhuang et al., 2020]

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P., and Eastham, S. D. Enabling High-Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS-Chem Atmospheric Chemistry Model. Journal of Advances in Modeling Earth Systems, May 2020. doi:10.1029/2020MS002064.